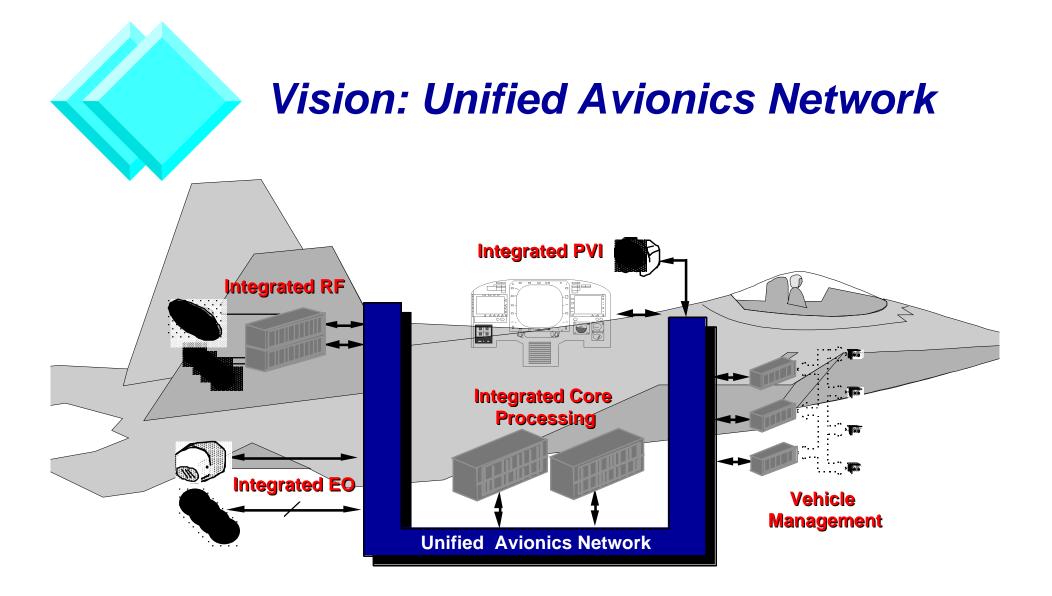


Report on 1996 Open System Architecture Studies

Open Systems Joint Task Force

30-April-1998


Harris Corporation for OS-JTF and Air Force Research Laboratory

Outline of Presentation

- Vision: Unified Network
- OSA Study Tasks 1996 Efforts
- Our View of GOA Model
- Lessons Learned
- Closing Observations

OSA Study Tasks — 1996 Efforts

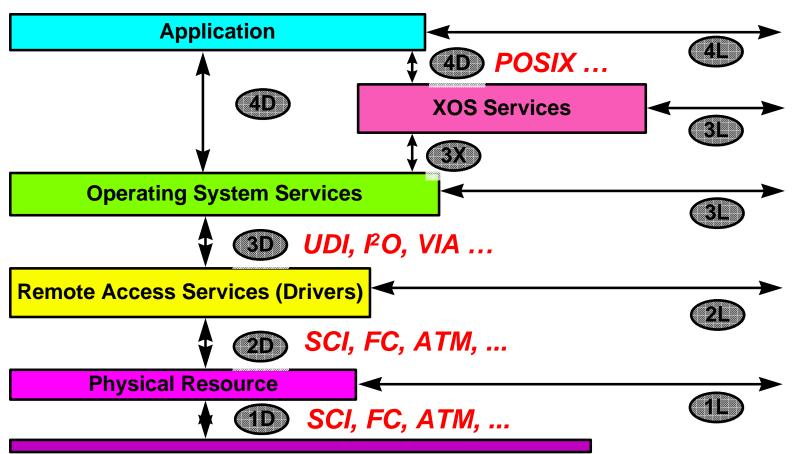
* Task 1: Network Requirements

 Harris shall work with the government and JSF Weapon System Concept (WSC) contractors to develop requirements for the JSF core processing networks

Task 2: Network Survey

 Harris shall investigate and review networks — available in the commercial and military marketplace — for applicability to JSF core processing networks

* Task 3: Trade Studies


 Harris shall use the results of Tasks 1 and 2 to perform a series of trade studies addressing applicability to JSF

* Task 4: Recommendations

 Harris shall provide recommendations for an optimized network for the JSF avionics architecture

Our View of GOA[†] Model

[†]GOA Model: Generic Open Architecture Model, ref. SAE AS4893

5

Lessons Learned ... Situation in 1996 ...

	АТМ	Fibre Channel Family		SCI Family	
		ANSI X3T11,	IEEE	IEEE 1596	IEEE P1394.2
		Fibre	802.3z, Gigabit	SCI	Serial
		Channel	Ethernet	301	Express
Commercial Acceptance	Excellent	Very Good	Good and Growing	Fair	Fair
Standardization Complete	No	Partially	No	Yes	No
Optimized for Streaming Transfers (for Sensor Data)	~	Yes	~	No	Yes
Optimized for Low-Latency Memory Transactions (for High Performance Multiprocessing)	~	No	No	Yes	Yes

Lessons Learned: Market Research

- Each emerging standard has a trade association
 - Typically, these associations evangelistically project exponential growth for their standard
- Independent market research providers avoid providing definitive projections about a standard's future
- For emerging standards, there is often little correlation between the projections of market research firms and trade associations
- Established market researchers will provide fairly specific, quantitative, information about mature technology products
 - Mature may mean as little as one year old in this arena.

Market Classifier: System Diameter

- The most prominent market classifier between digital communication systems is system extent, what we call system diameter
 - At the larger system diameters say, greater than ten meters one finds the generally recognized networks
 - Ethernet, SONET, ATM, and so forth
 - At smaller system diameters say, less than one meter one finds a number of important digital interconnects (often buses)
 - VME, PCI, ISA, etc.
 - Interconnects such as SCSI fall somewhere in between

Acronyms:

- SONET: Synchronous Optical Network
- ATM: Asynchronous Transfer Mode
- PCI: Peripheral Component Interconnect
- ISA: Industry Standard Architecture
- SCSI: Small Computer System Interface

Market Observations for Digital Interconnects

Mnemonic	Name	Typical System Diameter	Leaders	Contenders, Most Still Emerging
CAN	Chip Area Network	Millimeters	Not Applicable, Generally Proprietary	Pre-emergent standards for chip-level intellectual property sharing
BAN	Backplane Area Network	Up to ~0.5 Meters	VME, PCI, ISA	Futurebus+
DAN	Desktop Area Network	~0 to 3 Meters	RS-232, SCSI	IEEE 1394 Serialbus, Fibre Channel, Serial Express
SAN	System Area Network	~0 to 30 Meters	None, Emerging Market	Fibre Channel, Myrinet™, SCI, Serial Express, Proprietary Projects
LAN	Local Area Network	10 to 100 Meters	10 Mbit and 100 Mbit Ethernet	Gigabit Ethernet, ATM
WAN	Wide Area Network	0.5 km and up	Various	ATM over SONET

30 April 1998 Harris 1996 OSA Studies 9

Closing Observations

- Technology obsolescence is the biggest challenge to successful long-term use of open systems in advanced avionics
 - A network with good/growing commercial support today may not enjoy commercial support over the life of the aircraft
- All of the standards/standardization projects discussed have the potential to form the basis of a useful network for next-generation avionics
- Selecting an optimum protocol for an application platform requires detailed knowledge of its Concepts of Operation (CONOPS)
 - The platform primes typically view this information to be competition sensitive during the early competition phase